Learn R Programming

Compositional (version 5.5)

Tuning of the projection pursuit regression for compositional data: Tuning of the projection pursuit regression for compositional data

Description

Tuning of the projection pursuit regression for compositional data.

Usage

compppr.tune(y, x, nfolds = 10, folds = NULL, seed = NULL,
nterms = 1:10, type = "alr", yb = NULL )

Arguments

y

A matrix with the available compositional data, but zeros are not allowed.

x

A matrix with the continuous predictor variables.

nfolds

The number of folds to use.

folds

If you have the list with the folds supply it here.

seed

You can specify your own seed number here or leave it NULL.

nterms

The number of terms to try in the projection pursuit regression.

type

Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.

yb

If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL.

Value

A list including:

kl

The average Kullback-Leibler divergence.

perf

The average Kullback-Leibler divergence.

runtime

The run time of the cross-validation procedure.

Details

The function performs tuning of the projection pursuit regression algorithm.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also

comp.ppr, aknnreg.tune, akernreg.tune

Examples

Run this code
# NOT RUN {
y <- as.matrix(iris[, 1:3])
y <- y/ rowSums(y)
x <- iris[, 4]
mod <- compppr.tune(y, x)
# }

Run the code above in your browser using DataLab