## True covariance matrix
sigma <- diag(5)
sigma[3,2] <- sigma[2,3] <- 0.8
## Generate normal random samples
## Not run:
# library(MASS)
# X <- mvrnorm(200,rep(0,5),sigma)
#
# ## Covariance estimation
# gridpts <- kgrid(50,100) ## generate grid of penalties to search over
# crcov <- select_condreg(X,gridpts) ## automatically selects penalty parameter
#
# ## Inspect output
# str(crcov) ## returned object
# sigma.hat <- crcov$S ## estimate of sigma matrix
# omega.hat <- crcov$invS ## estimate of inverse of sigma matrix
# ## End(Not run)
Run the code above in your browser using DataLab