m.step: M-step of the EM algorithm for Parsimonious Normal Mixtures
Description
Carries out the M-step for EM algorithm
Usage
m.step(X, modelname, z, mtol=1e-10, mmax=10)
Value
A list of the model parameters with the mu, Sigma, invSigma and px for each group.
Arguments
X
a matrix such that \(n\) rows correspond to observations and \(p\) columns correspond to variables.
modelname
A three letter sequence indicating the covariance structure.
Possible values are: "EII", "VII", "EEI", "VEI", "EVI", "VVI", "EEE", "VEE", "EVE", "EEV", "VVE", "VEV", "EVV", "VVV".
z
A matrix of weights such that \(n\) rows correspond to observations and \(G\) columns correspond to groups.
mtol
The convergence criteria for the M-step if an iterative procedure is necessary.
mmax
The maximum number of iterations for an iterative procedure.
Author
Antonio Punzo, Angelo Mazza, Paul D. McNicholas
References
Punzo A., Mazza A. and McNicholas P. D. (2018). ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions. Journal of Statistical Software, 85(10), 1--25.
Punzo A. and McNicholas P. D. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506--1537.