Learn R Programming

CorReg (version 1.0.5)

MSE_loc: simple MSE function

Description

This function computes the MSE (Mean Squared Error) of prediction associated to a vector of coefficients A used to predict a response variable Y by linear regression on X, with an intercept or not.

Usage

MSE_loc(Y = Y, X = X, A = A, intercept = T)

Arguments

Y
the response variable (vector)
X
the dataset (matrix of covariates)
A
the vector of coefficients
intercept
(boolean) to add a column of 1 to X if A contains an intercept and X doesn't.

Value

  • the Mean Squared Error observed on X when using A coefficients to predict Y.

Examples

Run this code
require(CorReg)
   #dataset generation
   base=mixture_generator(n=15,p=5,valid=100,scale=TRUE)
   X_appr=base$X_appr #learning sample
   Y_appr=base$Y_appr#response variable
   X_test=base$X_test#validation sample
   Y_test=base$Y_test#response variable (validation sample)
   A=lm(Y_appr~X_appr)$coefficients
MSE_loc(Y=Y_appr,X=X_appr,A=A)#MSE on the learning dataset
MSE_loc(Y=Y_test,X=X_test,A=A)#MSE on the validation sample

Run the code above in your browser using DataLab