## Not run:
# # Load the data
# data(PHAT0train)
# data(PHAT0test)
#
# # Combine the training and test data and calculate the principal components
# PC_comb <- computeCombPCA(subset(PHAT0train, select=c(-redshift)),
# subset(PHAT0test, select=c(-redshift)),
# robust=FALSE) # robust is false here just to make it faster
# Trainpc <- cbind(PC_comb$x, redshift=PHAT0train$redshift)
# Testpc <- PC_comb$y
#
# # Fitting
# Fit <- glmTrainPhotoZ(Trainpc, formula=redshift~poly(Comp.1,2)*
# poly(Comp.2,2)*Comp.3*Comp.4*Comp.5*Comp.6,
# method="Bayesian", family="gamma")
#
# # Perform the photometric redshift estimation
# photoz <- predict(Fit$glmfit, newdata=Testpc, type="response")
# specz <- PHAT0test$redshift
#
# # Show a plot with the results
# plotDiagPhotoZ(photoz, specz, "box")
# ## End(Not run)
Run the code above in your browser using DataLab