Learn R Programming

Cyclops (version 1.2.0)

confint.cyclopsFit: Confidence intervals for Cyclops model parameters

Description

confinit.cyclopsFit profiles the data likelihood to construct confidence intervals of arbitrary level. Usually it only makes sense to do this for variables that have not been regularized TODO: Profile data likelihood or joint distribution of remaining parameters.

Usage

"confint"(object, parm, level = 0.95, overrideNoRegularization = FALSE, includePenalty = TRUE, rescale = FALSE, ...)

Arguments

object
A fitted Cyclops model object
parm
A specification of which parameters require confidence intervals, either a vector of numbers of covariateId names
level
Numeric: confidence level required
overrideNoRegularization
Logical: Enable confidence interval estimation for regularized parameters
includePenalty
Logical: Include regularized covariate penalty in profile
rescale
Boolean: rescale coefficients for unnormalized covariate values
...
Additional argument(s) for methods

Value

A matrix with columns reporting lower and upper confidence limits for each parameter. These columns are labelled as (1-level) / 2 and 1 - (1 - level) / 2 in percent (by default 2.5 percent and 97.5 percent)

Examples

Run this code
#Generate some simulated data:
sim <- simulateCyclopsData(nstrata = 1, nrows = 1000, ncovars = 2, eCovarsPerRow = 0.5, 
                           model = "poisson")
cyclopsData <- convertToCyclopsData(sim$outcomes, sim$covariates, modelType = "pr", 
                                    addIntercept = TRUE)

#Define the prior and control objects to use cross-validation for finding the 
#optimal hyperparameter:
prior <- createPrior("laplace", exclude = 0, useCrossValidation = TRUE)
control <- createControl(cvType = "auto", noiseLevel = "quiet")

#Fit the model
fit <- fitCyclopsModel(cyclopsData,prior = prior, control = control)  

#Find out what the optimal hyperparameter was:
getHyperParameter(fit)

#Extract the current log-likelihood, and coefficients
logLik(fit)
coef(fit)

#We can only retrieve the confidence interval for unregularized coefficients:
confint(fit, c(0))

Run the code above in your browser using DataLab