Learn R Programming

D2MCS (version 1.0.1)

ClusterPredictions: Manages the predictions achieved on a cluster.

Description

Stores the predictions achieved by the best M.L. of each cluster.

Arguments

Methods


Method new()

Method for initializing the object arguments during runtime.

Usage

ClusterPredictions$new(class.values, positive.class)

Arguments

class.values

A character vector containing the values of the target class.

positive.class

A character with the value of the positive class.


Method add()

The function is used to add the prediction achieved by a specific M.L. model.

Usage

ClusterPredictions$add(prediction)

Arguments

prediction

A Prediction object containing the computed predictions.


Method get()

The function returns the predictions placed at specific position.

Usage

ClusterPredictions$get(position)

Arguments

position

A numeric value indicating the position of the predictions to be obtained.

Returns

A Prediction object.


Method getAll()

The function returns all the predictions.

Usage

ClusterPredictions$getAll()

Returns

A list containing all computed predictions.


Method size()

The function returns the number of computed predictions.

Usage

ClusterPredictions$size()

Returns

A numeric value.


Method getPositiveClass()

The function gets the value of the positive class.

Usage

ClusterPredictions$getPositiveClass()

Returns

A character vector of size 1.


Method getClassValues()

The function returns all the values of the target class.

Usage

ClusterPredictions$getClassValues()

Returns

A character vector containing all target values.


Method clone()

The objects of this class are cloneable with this method.

Usage

ClusterPredictions$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

D2MCS, ClassificationOutput, Prediction