Performs the feature-clustering using MCC score. Valid for both bi-class and multi-class problems. Only valid for bi-class problems.
D2MCS::GenericHeuristic
-> MultinformationHeuristic
new()
Empty function used to initialize the object arguments in runtime.
MultinformationHeuristic$new()
heuristic()
Mutinformation takes two random variables as input and computes the mutual information in nats according to the entropy estimator method.
MultinformationHeuristic$heuristic(col1, col2, column.names = NULL)
col1
A vector/factor denoting a random variable or a data.frame denoting a random vector where columns contain variables/features and rows contain outcomes/samples.
col2
An another random variable or random vector (vector/factor or data.frame).
column.names
An optional character vector with the names of both columns.
Returns the mutual information I(X;Y) in nats.
clone()
The objects of this class are cloneable with this method.
MultinformationHeuristic$clone(deep = FALSE)
deep
Whether to make a deep clone.
Dataset
, mutinformation