# NOT RUN {
print("Multiple Logistic Regression - Example 8.2")
plot(northing ~ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],
  xlab="Meters east of reference point", ylab="Meters north")
pairs(frogs[,4:10])
attach(frogs)
pairs(cbind(altitude,log(distance),log(NoOfPools),NoOfSites),
  panel=panel.smooth, labels=c("altitude","log(distance)",
  "log(NoOfPools)","NoOfSites"))
detach(frogs)
frogs.glm0 <- glm(formula = pres.abs ~ altitude + log(distance) +
  log(NoOfPools) + NoOfSites + avrain + meanmin + meanmax,
  family = binomial, data = frogs)
summary(frogs.glm0)
frogs.glm <- glm(formula = pres.abs ~ log(distance) + log(NoOfPools) + 
meanmin +
  meanmax, family = binomial, data = frogs)
oldpar <- par(mfrow=c(2,2))
termplot(frogs.glm, data=frogs)
termplot(frogs.glm, data=frogs, partial.resid=TRUE)
cv.binary(frogs.glm0)   # All explanatory variables
pause()
cv.binary(frogs.glm)    # Reduced set of explanatory variables
for (j in 1:4){
 rand <- sample(1:10, 212, replace=TRUE)
 all.acc <- cv.binary(frogs.glm0, rand=rand, print.details=FALSE)$acc.cv
 reduced.acc <- cv.binary(frogs.glm, rand=rand, print.details=FALSE)$acc.cv
 cat("\nAll:", round(all.acc,3), "  Reduced:", round(reduced.acc,3))
}
# }
Run the code above in your browser using DataLab