plot(ts(bomsoi[, 15:14], start=1900),
panel=function(y,...)panel.smooth(1900:2005, y,...))
pause()
# Check for skewness by comparing the normal probability plots for
# different a, e.g.
par(mfrow = c(2,3))
for (a in c(50, 100, 150, 200, 250, 300))
qqnorm(log(bomsoi[, "avrain"] - a))
# a = 250 leads to a nearly linear plot
pause()
par(mfrow = c(1,1))
plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI",
ylab = "log(avrain = 250)")
lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2)
# NB: separate lowess fits against time
lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250)))
pause()
xbomsoi <-
with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33))
xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y
xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y
rainpos <- pretty(bomsoi$avrain, 5)
with(xbomsoi,
{plot(cuberootRain ~ SOI, xlab = "SOI",
ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
## Relative changes in the two trend curves
lines(lowess(cuberootRain ~ SOI))
lines(lowess(trendRain ~ trendSOI), lwd=2)
})
pause()
xbomsoi$detrendRain <-
with(xbomsoi, cuberootRain - trendRain + mean(trendRain))
xbomsoi$detrendSOI <-
with(xbomsoi, SOI - trendSOI + mean(trendSOI))
oldpar <- par(mfrow=c(1,2), pty="s")
plot(cuberootRain ~ SOI, data = xbomsoi,
ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(cuberootRain ~ SOI)))
plot(detrendRain ~ detrendSOI, data = xbomsoi,
xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")
axis(2, at = rainpos^0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI)))
pause()
par(oldpar)
attach(xbomsoi)
xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0))
# ordinary regression model
xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,
order=c(0,0,12))
# regression with MA(12) errors -- all 12 MA parameters are estimated
xbomsoi.ma12
pause()
xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,
seasonal=list(order=c(0,0,1), period=12))
# regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter
# is estimated
xbomsoi.ma12s
pause()
xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
xreg = detrendSOI, fixed = c(0, 0, 0,
NA, rep(0, 4), NA, 0, NA, NA, NA, NA),
transform.pars=FALSE)
# error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10
# NA's are used to designate coefficients that still need to be estimated
# transform.pars is set to FALSE, so that MA coefficients are not
# transformed (see help(arima))
detach(xbomsoi)
pause()
Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)),
type="Ljung-Box", lag=20)
pause()
attach(xbomsoi)
xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12),
xreg = poly(detrendSOI,2), fixed = c(0,
0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)),
transform.pars=FALSE)
xbomsoi2.maSel
qqnorm(resid(xbomsoi.maSel, type="normalized"))
detach(xbomsoi)
Run the code above in your browser using DataLab