print("Multiple Logistic Regression - Example 8.2")
plot(northing ~ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],
xlab="Meters east of reference point", ylab="Meters north")
pairs(frogs[,4:10])
attach(frogs)
pairs(cbind(altitude,log(distance),log(NoOfPools),NoOfSites),
panel=panel.smooth, labels=c("altitude","log(distance)",
"log(NoOfPools)","NoOfSites"))
detach(frogs)
frogs.glm0 <- glm(formula = pres.abs ~ altitude + log(distance) +
log(NoOfPools) + NoOfSites + avrain + meanmin + meanmax,
family = binomial, data = frogs)
summary(frogs.glm0)
frogs.glm <- glm(formula = pres.abs ~ log(distance) + log(NoOfPools) +
meanmin +
meanmax, family = binomial, data = frogs)
oldpar <- par(mfrow=c(2,2))
termplot(frogs.glm, data=frogs)
termplot(frogs.glm, data=frogs, partial.resid=TRUE)
cv.binary(frogs.glm0) # All explanatory variables
pause()
cv.binary(frogs.glm) # Reduced set of explanatory variables
for (j in 1:4){
rand <- sample(1:10, 212, replace=TRUE)
all.acc <- cv.binary(frogs.glm0, rand=rand, print.details=FALSE)$acc.cv
reduced.acc <- cv.binary(frogs.glm, rand=rand, print.details=FALSE)$acc.cv
cat("\nAll:", round(all.acc,3), " Reduced:", round(reduced.acc,3))
}
Run the code above in your browser using DataLab