# NOT RUN {
# }
# NOT RUN {
library("ranger")
titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50,
probability = TRUE)
explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived)
mp_ranger <- model_performance(explainer_ranger)
plot(mp_ranger)
plot(mp_ranger, geom = "boxplot", show_outliers = 1)
titanic_ranger_model2 <- ranger(survived~gender + fare, data = titanic_imputed,
num.trees = 50, probability = TRUE)
explainer_ranger2 <- explain(titanic_ranger_model2, data = titanic_imputed[,-8],
y = titanic_imputed$survived,
label = "ranger2")
mp_ranger2 <- model_performance(explainer_ranger2)
plot(mp_ranger, mp_ranger2, geom = "prc")
plot(mp_ranger, mp_ranger2, geom = "roc")
plot(mp_ranger, mp_ranger2, geom = "lift")
plot(mp_ranger, mp_ranger2, geom = "gain")
plot(mp_ranger, mp_ranger2, geom = "boxplot")
plot(mp_ranger, mp_ranger2, geom = "histogram")
plot(mp_ranger, mp_ranger2, geom = "ecdf")
titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial")
explainer_glm <- explain(titanic_glm_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived, label = "glm",
predict_function = function(m,x) predict.glm(m,x,type = "response"))
mp_glm <- model_performance(explainer_glm)
plot(mp_glm)
titanic_lm_model <- lm(survived~., data = titanic_imputed)
explainer_lm <- explain(titanic_lm_model, data = titanic_imputed[,-8],
y = titanic_imputed$survived, label = "lm")
mp_lm <- model_performance(explainer_lm)
plot(mp_lm)
plot(mp_ranger, mp_glm, mp_lm)
plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot")
plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot", show_outliers = 1)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab