data(exprs)
## divide exprs into two parts corresponding to condition 1
##(exprs.1) and condition 2 (exprs.2) respectively
expGenes<-rownames(exprs)
exprs<-exprs[1:100,]
exprs.1<-exprs[1:100,1:16]
exprs.2<-exprs[1:100,17:63]
DCp.res<-DCp(exprs.1,exprs.2,
link.method='qth',cutoff=0.25,N=0)
DCe.res<-DCe(exprs.1,exprs.2,
link.method='qth',
cutoff=0.25,
nbins=10,p=0.1)
## combine two Differential Co-expression Analysis results
DCsum.res<-DCsum(DCp.res,DCe.res,
DCpcutoff=0.25,DCecutoff=0.4)
DCsum.res$DCGs[1:3,]
DCsum.res$DCLs[1:3,]
## sort out differentially regulated genes and differentially regulated links
data(tf2target) ## TF-to-target relationships
DRsort.res<-DRsort(DCsum.res$DCGs,DCsum.res$DCLs,tf2target,expGenes)
## or
DRsort.res<-DRsort(DCe.res$DCGs,DCe.res$DCLs,tf2target,expGenes)
## plot differentially regulated links
DRplot.res<-DRplot(DCsum.res$DCGs,DCsum.res$DCLs,
tf2target,
expGenes,
type='TF_bridged_DCL',
vsize=5,asize=0.25,lcex=0.3,ewidth=1,
figname=c('TF2target_DCL.pdf','TF_bridged_DCL.pdf'))
## rank regulators by TED or TDD
DRrank.res<-DRrank(DCsum.res$DCGs,DCsum.res$DCLs,
tf2target,
expGenes,
rank.method=c('TED','TDD')[1],
Nperm=0)
## rank regulators by RIF\
data(exprs_design)
RIF.res<-RIF(exprs,exprs.1,exprs.2,
tf2target,
exprs_design,
p.value=0.05)
Run the code above in your browser using DataLab