# NOT RUN {
n <- 500
#Predictors with normal distribution
set.seed(1235)
scoreNegative <- rnorm(n, mean = 0.25,sd = 0.125)
set.seed(11452)
scorePositive1 <- rnorm(n, mean = 0.55,sd = 0.125)
set.seed(54321)
scorePositive2 <- rnorm(n, mean = 0.65,sd = 0.125)
response = c(rep(c("target"), times = n),rep(c("nontarget"), times = n))
predictor1 = c(scoreNegative,scorePositive1)
predictor2 = c(scoreNegative,scorePositive2)
responses <- data.frame(
response = response
)
predictors <- data.frame(
DET1 = predictor1,
DET2 = predictor2
)
#Run in parallel for a faster execution (takes about 3-5 min in a 2018 laptop) activating
#logical argument 'parallel'
detcurve <- detc.CI(responses,predictors,
names = names(predictors),
title = "Example with CI",
positive="target",
parallel = TRUE)
#If you want to plot the EER and its CI on the curves:
for (name in names(detcurve)){
points(qnorm(detcurve[[name]]$EER_median),qnorm(detcurve[[name]]$EER_median),
pch=19,col = detcurve[[name]]$color,lwd=2.5)
points(qnorm(detcurve[[name]]$EER_lower),qnorm(detcurve[[name]]$EER_lower),
pch=20,col = detcurve[[name]]$color,lwd=2.5)
points(qnorm(detcurve[[name]]$EER_upper),qnorm(detcurve[[name]]$EER_upper),
pch=20,col = detcurve[[name]]$color,lwd=2.5)
}
# }
Run the code above in your browser using DataLab