# NOT RUN {
library(DIME);
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);
# fit GNG model with 2 normal components
test <- gng.fit(data, K = 2);
# vector of classification. 1 represents differential, 0 denotes non-differential
gngClass <- test$class;
# }
Run the code above in your browser using DataLab