## Load the Switzerland data
data(Switzerland)
## Check that the proportions sum to 1 (required for DI models)
## p1 to p4 are in the 4th to 7th columns in Switzerland
Switzerlandsums <- rowSums(Switzerland[4:7])
summary(Switzerlandsums)
## Fit the a simple AV DImodel with theta = 1
mod <- DI(y = "yield", prop = c("p1", "p2", "p3", "p4"),
DImodel = "AV", data = Switzerland)
summary(mod)
## Fit the same model but group the 4 species identity effect into 2 groups
mod <- DI(y = "yield", prop = c("p1", "p2", "p3", "p4"),
ID = c("ID1", "ID1", "ID2", "ID2"), DImodel = "AV",
data = Switzerland)
summary(mod)
## Combine the four identity effects into a single term and estimate theta
mod <- DI(y = "yield", prop = c("p1", "p2", "p3", "p4"),
ID = c("ID1", "ID1", "ID1", "ID1"), DImodel = "AV",
estimate_theta = TRUE, data = Switzerland)
summary(mod)
## Fit the FG DImodel, with factors density and treatment, and with theta = 1
m1 <- DI(y = "yield", density = "density", prop = 4:7, treat = "nitrogen",
FG = c("G","G","L","L"), DImodel = "FG", data = Switzerland)
summary(m1)
## Fit the FG DImodel, with factors density and treatment, and a fixed value of theta not equal to 1
m2 <- DI(y = "yield", density = "density", prop = 4:7, treat = "nitrogen",
FG = c("G","G","L","L"), DImodel = "FG", data = Switzerland,
theta = 0.5)
summary(m2)
## Test if the identity effects interact with nitrogen (and main effect of nitrogen excluded)
m3 <- DI(y = "yield", density = "density", prop = 4:7, FG = c("G", "G", "L", "L"), DImodel = "FG",
extra_formula = ~ (p1 + p2 + p3 + p4):nitrogen, data = Switzerland)
summary(m3)
## Fit the average pairwise model and check for a quadratic term using extra_formula.
## Need to create AV variable to be included in extra_formula and put in new dataset Switzerland2.
AV_variable <- DI_data(prop = c("p1","p2","p3","p4"), data = Switzerland, what = "AV")
Switzerland2 <- data.frame(Switzerland, "AV" = AV_variable)
m4 <- DI(y = "yield", density = "density", prop = 4:7, DImodel = "AV",
extra_formula = ~ I(AV**2), data = Switzerland2)
summary(m4)
## Using the custom_formula option to fit some, but not all, of the FG interactions.
## Fit the FG DImodel using custom_formula, with factors density and treatment, and theta = 1.
## Need to create functional group interaction variables for inclusion in custom_formulaand put
## in new dataset Switzerland3.
FG_matrix <- DI_data(prop = 4:7, FG = c("G","G","L","L"), data = Switzerland, what = "FG")
Switzerland3 <- data.frame(Switzerland, FG_matrix)
m5 <- DI(y = "yield", prop = c("p1","p2","p3","p4"),
custom_formula = yield ~ 0 + p1 + p2 + p3 + p4 + bfg_G_L + wfg_G
+ density + nitrogen,
data = Switzerland3)
summary(m5)
Run the code above in your browser using DataLab