
Employs dm.ddf
over time to generate a state-of-the-art map.
map.soa.ddf(xdata, ydata, date,
rts="crs", g=NULL, wd=NULL, sg="ssm", cv="convex", mk="dmu")
Input(s) vector (n by m)
Output(s) vector (n by s)
Production date (n by 1)
Returns to scale assumption
"crs"
Constant RTS (default)
"vrs"
Variable RTS
"irs"
Increasing RTS
"drs"
Decreasing RTS
Directional vector indicating a measurement direction (n by (m+s))
By default (NULL
), xdata
& ydata
will be used
Weak disposability vector indicating (an) undesirable output(s) (1 by s)
Employs second-stage optimization
"ssm"
Slack-sum maximization (default)
"max"
Date-sum maximization (only if date
is defined)
"min"
Date-sum minimization (only if date
is defined)
Convexity assumption
"convex"
Convexity holds (default)
"fdh"
Free disposal hull (this will override rts
)
Marker on the map
"dmu"
DMU index (default)
"eff"
Efficiency score
Dong-Joon Lim, PhD
map.soa.ddf
SOA mapping using DDF
map.soa.dea
SOA mapping using DEA
map.soa.hdf
SOA mapping using HDF
map.soa.sbm
SOA mapping using SBM
map.soa.sf
SOA mapping using SF
# Load engine dataset
df <- dataset.engine.2015
# Subset for forced induction systems
fis <- subset(df, grepl("^.C..", df[, 8]))
# Parameters
x <- subset(fis, select = 4)
y <- subset(fis, select = 6 : 7)
d <- subset(fis, select = 2)
g <- matrix(c(1), nrow = nrow(x), ncol = 3)
# Generate an SOA map
map.soa.ddf(x, y, d, "crs", g)
Run the code above in your browser using DataLab