50% off: Unlimited data and AI learning.
The Learning Leader's Guide to AI Literacy

DJL (version 3.9)

map.soa.ddf: SOA mapping using DDF

Description

Employs dm.ddf over time to generate a state-of-the-art map.

Usage

map.soa.ddf(xdata, ydata, date, 
            rts="crs", g=NULL, wd=NULL, sg="ssm", cv="convex", mk="dmu")

Arguments

xdata

Input(s) vector (n by m)

ydata

Output(s) vector (n by s)

date

Production date (n by 1)

rts

Returns to scale assumption
"crs" Constant RTS (default)
"vrs" Variable RTS
"irs" Increasing RTS
"drs" Decreasing RTS

g

Directional vector indicating a measurement direction (n by (m+s))
By default (NULL), xdata & ydata will be used

wd

Weak disposability vector indicating (an) undesirable output(s) (1 by s)

sg

Employs second-stage optimization
"ssm" Slack-sum maximization (default)
"max" Date-sum maximization (only if date is defined)
"min" Date-sum minimization (only if date is defined)

cv

Convexity assumption
"convex" Convexity holds (default)
"fdh" Free disposal hull (this will override rts)

mk

Marker on the map
"dmu" DMU index (default)
"eff" Efficiency score

Author

Dong-Joon Lim, PhD

See Also

map.soa.ddf SOA mapping using DDF
map.soa.dea SOA mapping using DEA
map.soa.hdf SOA mapping using HDF
map.soa.sbm SOA mapping using SBM
map.soa.sf SOA mapping using SF

Examples

Run this code
# Load engine dataset
  df <- dataset.engine.2015

# Subset for forced induction systems
  fis <- subset(df, grepl("^.C..", df[, 8]))

# Parameters
  x <- subset(fis, select = 4)
  y <- subset(fis, select = 6 : 7)
  d <- subset(fis, select = 2)
  g <- matrix(c(1), nrow = nrow(x), ncol = 3)

# Generate an SOA map
  map.soa.ddf(x, y, d, "crs", g)

Run the code above in your browser using DataLab