Learn R Programming

DLMtool (version 5.2)

Fadapt: Adaptive Fratio

Description

An adaptive MP that uses trajectory in inferred suplus production and fishing mortality rate to update a TAC

Usage

Fadapt(x, Data, reps = 100, plot = FALSE, yrsmth = 7, gg = 1)

Arguments

x

A position in a data-limited methods data object

Data

A data-limited methods data object

reps

The number of stochastic samples of the MP recommendation(s)

plot

Logical. Show the plot?

yrsmth

Years over which to smooth recent estimates of surplus production

gg

A gain parameter controlling the speed in update in TAC.

Value

An object of class Rec with the TAC slot populated with a numeric vector of length reps

A numeric vector of quota recommendations

Required Data

See '>Data for information on the Data object

Fadapt: Abun, Cat, FMSY_M, Ind, Mort, Year

Rendered Equations

See Online Documentation for correctly rendered equations

Details

Fishing rate is modified each year according to the gradient of surplus production with biomass (aims for zero). F is bounded by FMSY/2 and 2FMSY and walks in the logit space according to dSP/dB. This is derived from the theory of Maunder 2014.

The TAC is calculated as: $$\textrm{TAC}_y= F_y B_{y-1}$$ where \(B_{y-1}\) is the most recent biomass, estimated with a loess smoother of the most recent yrsmth years from the index of abundance (Data@Ind) and estimate of current abundance (Data@Abun), and

$$F_y = F_{\textrm{lim}_1} + \left(\frac{\exp^{F_{\textrm{mod}_2}}} {1 + \exp^{F_{\textrm{mod}_2}}} F_{\textrm{lim}_3} \right) $$

where \(F_{\textrm{lim}_1} = 0.5 \frac{F_\textrm{MSY}}{M}M\), \(F_{\textrm{lim}_2} = 2 \frac{F_\textrm{MSY}}{M}M\), \(F_{\textrm{lim}_3}\) is \(F_{\textrm{lim}_2} - F_{\textrm{lim}_1}\), \(F_{\textrm{mod}_2}\) is $$F_{\textrm{mod}_1} + g -G$$ where \(g\) is gain parameter gg, G is the predicted surplus production given current abundance, and: $$F_{\textrm{mod}_1} = \left\{\begin{array}{ll} -2 & \textrm{if } F_\textrm{old} < F_{\textrm{lim}_1} \\ 2 & \textrm{if } F_\textrm{old} > F_{\textrm{lim}_2} \\ \log{\frac{F_\textrm{frac}}{1-F_\textrm{frac}}} & \textrm{if } F_{\textrm{lim}_1} \leq F_\textrm{old} \leq F_{\textrm{lim}_2} \\ \end{array}\right. $$ where \(-F_{\textrm{frac}} = \frac{F_{\textrm{old}} - F_{\textrm{lim}_1}}{F_{\textrm{lim}_3}} \), \(F_\textrm{old} = \sum{\frac{C_\textrm{hist}}{B_\textrm{hist}}}/n\) where \(C_\textrm{hist}\) and \(B_\textrm{hist}\) are smooth catch and biomass over last yrsmth, and \(n\) is yrsmth.

Tested in Carruthers et al. 2015.

References

Carruthers et al. 2015. Performance evaluation of simple management procedures. ICES J. Mar Sci. 73, 464-482.

Maunder, M. 2014. http://www.iattc.org/Meetings/Meetings2014/MAYSAC/PDFs/SAC-05-10b-Management-Strategy-Evaluation.pdf

See Also

Other Fmsy/M methods: DynF, Fratio

Other Surplus production MPs: Rcontrol, SPMSY, SPSRA, SPmod, SPslope

Examples

Run this code
# NOT RUN {
Fadapt(1, Data=DLMtool::Atlantic_mackerel, plot=TRUE)
# }

Run the code above in your browser using DataLab