analysis.type
)
and chromosomal position, or
- Standardise this information from DSS:::DMLtest()
to the
same data format.
cpg.annotate(datatype = c("array", "sequencing"), object, annotation=c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19"), analysis.type = c("differential", "variability"), design, contrasts = FALSE, cont.matrix = NULL, fdr = 0.05, coef, ...)
DSS:::DMLtest()
.
object
. Identical context to minfi
,
i.e. annotation <- annotation(minfiobject)
where
minfiobject
is a [Genomic](Methyl|Ratio)Set)
.
Argument for 450K arrays:
c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19")
.
Argument for EPIC arrays:
c(array = "IlluminaHumanMethylationEPIC", annotation = "ilm10b2.hg19")
.
An error will be thrown if you attempt one on an object
with rownames on the other, due to non-overlapping probes
on both platforms. Only applicable when datatype="array"
.
"differential"
for dmrcate()
to return DMRs and
"variability"
to return VMRs. Only applicable when datatype="array"
.
limma
. Must have an intercept if contrasts=FALSE
.
Applies only when analysis.type="differential"
.
Only applicable when datatype="array"
.
limma
-style contrast matrix is specified.
Only applicable when datatype="array"
.
Limma
-style contrast matrix for explicit contrasting. For each call to cpg.annotate
, only one contrast will be fit.
Only applicable when datatype="array"
.
design
corresponding to the phenotype
comparison. Corresponds to the comparison of interest in design
when contrasts=FALSE
, otherwise must be a column name in
cont.matrix
. Applies only when analysis.type="differential"
and when datatype="array"
.
limma
function lmFit().
Applies only when analysis.type="differential"
and when datatype="array"
.
dmrcate
, containing
the vectors:
ID
: Illumina probe ID or row number
stat
: t-statistic or Wald statistics between phenotypes for each CpG
CHR
: Chromosome which the CpG maps to
pos
: Genomic coordinate (on CHR
) that the CpG maps to
betafc
: The beta fold change according to the given design
indfdr
: Individually-derived FDRs for each CpG
is.sig
: Logical denoting either significance from fdr
(analysis.type="differential"
) or top ventile of variable probes (analysis.type="variability"
)
Feng, H., Conneely, K. N., & Wu, H. (2014). A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Research, 42(8), e69.
Peters T.J., Buckley M.J., Statham, A., Pidsley R., Samaras K., Lord R.V., Clark S.J. and Molloy P.L. De novo identification of differentially methylated regions in the human genome. Epigenetics & Chromatin 2015, 8:6, doi:10.1186/1756-8935-8-6.
## Not run:
# data(dmrcatedata)
# myMs <- logit2(myBetas)
# myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
# patient <- factor(sub("-.*", "", colnames(myMs)))
# type <- factor(sub(".*-", "", colnames(myMs)))
# design <- model.matrix(~patient + type)
# myannotation <- cpg.annotate("array", myMs.noSNPs, analysis.type="differential",
# design=design, coef=39)
# ## End(Not run)
Run the code above in your browser using DataLab