print.Surface_Cluster_Parameters: Print Parameter Selection Results in Surface Estimation
Description
Display information about a clustering-based surface estimation
parameter selection object.
Usage
# S3 method for Surface_Cluster_Parameters
print(x, type = "all", ...)
Value
A display of parameter selection results in clustering-based surface
estimation.
Arguments
x
A clustering-based surface estimation parameter selection object.
type
The type of information to display. The "cv_scores"
option prints the cross-validation or modified cross-validation scores
for each bandwidth. The "sigma" option prints the estimated noise level.
The "phi0" option prints the estimated value of the error density at 0.
The "mean_std_abs" option prints the estimated mean of absolute error.
The "all" option prints all the information.
...
Further arguments passed to or from other methods.
Author
Yicheng Kang
Details
Prints some information about a clustering-based surface estimation
parameter selection object. In particular, this method prints the cross-
validation or modified cross-validation scores, the selected bandwidth, the
estimated noise level, the estimated value of the error density at 0 and
the estimated mean of absolute error.
References
Kang, Y., Mukherjee, P.S. and Qiu, P. (2018) "Efficient Blind Image
Deblurring Using Nonparametric Regression and Local Pixel
Clustering", Technometrics, 60(4), 522 -- 531,
tools:::Rd_expr_doi("10.1080/00401706.2017.1415975").
Qiu, P. (2009) "Jump-Preserving Surface Reconstruction from Noisy
Data", Annals of the Institute of Statistical Mathematics,
61, 715 -- 751, tools:::Rd_expr_doi("10.1007/s10463-007-0166-9").