Learn R Programming

DRIP (version 2.3)

summary.Surface_Cluster_Parameters: Summarize Parameter Selection Results in Surface Estimation

Description

Summarize and display some key information about a clustering-based surface estimation parameter selection object.

Usage

# S3 method for Surface_Cluster_Parameters
summary(object, ...)

Value

A brief display of parameter selection results in clustering-based estimation.

Arguments

object

A clustering-based surface estimation parameter selection object.

...

Further arguments passed to or from other methods.

Author

Yicheng Kang

Details

Summarize some information about a clustering-based surface estimation parameter selection object. In particular, it displays the selected bandwidth, the estimated noise level, the estimated value of the error density at 0 and the estimated mean of absolute error.

References

Kang, Y., Mukherjee, P.S. and Qiu, P. (2018) "Efficient Blind Image Deblurring Using Nonparametric Regression and Local Pixel Clustering", Technometrics, 60(4), 522 -- 531, tools:::Rd_expr_doi("10.1080/00401706.2017.1415975").

Qiu, P. (2009) "Jump-Preserving Surface Reconstruction from Noisy Data", Annals of the Institute of Statistical Mathematics, 61, 715 -- 751, tools:::Rd_expr_doi("10.1007/s10463-007-0166-9").

See Also

surfaceCluster_bandwidth, print.Surface_Cluster_Parameters, plot.Surface_Cluster_Parameters

Examples

Run this code
data(brain)
bandwidth_select <- surfaceCluster_bandwidth(image = brain,
    bandwidths = c(3:4), sig.level = .9995, blur = FALSE)
summary(bandwidth_select)

Run the code above in your browser using DataLab