# NOT RUN {
# A toy example on a very small subsample of a microarray data set)
#
datafilename <- system.file("extdata", "transcripto_very_small_sample.txt",
package="DRomics")
o <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess")
s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.01)
f <- drcfit(s_quad, progressbar = TRUE)
# (1)
# Default plot of all the curves
#
curvesplot(f$fitres, xmax = max(f$omicdata$dose))
# }
# NOT RUN {
# the same plot with dose in log scale (need x != 0 in input)
curvesplot(f$fitres, xmin = 0.1, xmax = max(f$omicdata$dose),
dose_log_transfo = TRUE)
# the equivalent using the output of bmdcalc
(r <- bmdcalc(f))
curvesplot(r$res, xmax = max(f$omicdata$dose))
# plot of curves colored by models
curvesplot(r$res, xmax = max(f$omicdata$dose), colorby = "model")
# plot of curves facetted by trends
curvesplot(r$res, xmax = max(f$omicdata$dose), facetby = "trend")
# the same plot with free y scales
curvesplot(r$res, xmax = max(f$omicdata$dose), facetby = "trend",
free.y.scales = TRUE)
# (2)
# Plot of all the curves without shifting y0 values to 0
#
curvesplot(f$fitres, xmax = max(f$omicdata$dose), y0shift = FALSE)
# (3)
# Plot of all the curves colored by model, with one facet per trend
#
curvesplot(f$fitres, xmax = max(f$omicdata$dose),
facetby = "trend", colorby = "model")
# playing with size and transparency of lines
curvesplot(f$fitres, xmax = max(f$omicdata$dose),
facetby = "trend", colorby = "model",
line.size = 1, line.alpha = 0.5)
# (4) an example on a microarray data set (a subsample of a greater data set)
#
datafilename <- system.file("extdata", "transcripto_sample.txt", package="DRomics")
(o <- microarraydata(datafilename, check = TRUE, norm.method = "cyclicloess"))
(s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.001))
(f <- drcfit(s_quad, progressbar = TRUE))
(r <- bmdcalc(f))
curvesplot(f$fitres, xmax = max(f$omicdata$dose), facetby = "typology")
# (5) An example from data published by Larras et al. 2020
# in Journal of Hazardous Materials
# https://doi.org/10.1016/j.jhazmat.2020.122727
# a dataframe with metabolomic results (output $res of bmdcalc() or bmdboot() functions)
resfilename <- system.file("extdata", "triclosanSVmetabres.txt", package="DRomics")
res <- read.table(resfilename, header = TRUE, stringsAsFactors = TRUE)
str(res)
# a dataframe with annotation of each item identified in the previous file
# each item may have more than one annotation (-> more than one line)
annotfilename <- system.file("extdata", "triclosanSVmetabannot.txt", package="DRomics")
annot <- read.table(annotfilename, header = TRUE, stringsAsFactors = TRUE)
str(annot)
# Merging of both previous dataframes
# in order to obtain an extenderes dataframe
# bootstrap results and annotation
extendedres <- merge(x = res, y = annot, by.x = "id", by.y = "metab.code")
head(extendedres)
# Plot of the dose-response curves for a specific pathway
# in this example the "lipid metabolism" pathclass
LMres <- extendedres[extendedres$path_class == "Lipid metabolism", ]
curvesplot(LMres, facetby = "id", npoints = 100, line.size = 1,
colorby = "trend",
xmin = 0, xmax = 8)
# }
Run the code above in your browser using DataLab