# (1)
# An example from the paper published by Larras et al. 2020
# in Journal of Hazardous Materials
# https://doi.org/10.1016/j.jhazmat.2020.122727
# the dataframe with metabolomic results
resfilename <- system.file("extdata", "triclosanSVmetabres.txt", package="DRomics")
res <- read.table(resfilename, header = TRUE, stringsAsFactors = TRUE)
str(res)
# the dataframe with annotation of each item identified in the previous file
# each item may have more than one annotation (-> more than one line)
annotfilename <- system.file("extdata", "triclosanSVmetabannot.txt", package="DRomics")
annot <- read.table(annotfilename, header = TRUE, stringsAsFactors = TRUE)
str(annot)
# Merging of both previous dataframes
# in order to obtain an extenderes dataframe
extendedres <- merge(x = res, y = annot, by.x = "id", by.y = "metab.code")
head(extendedres)
# (1) Sensitivity by pathway
# (1.a) before selection
sensitivityplot(extendedres, BMDtype = "zSD",
group = "path_class",
BMDsummary = "first.quartile")
# (1.b) after selection on representativeness
extendedres.b <- selectgroups(extendedres,
group = "path_class",
nitemsmin = 10)
sensitivityplot(extendedres.b, BMDtype = "zSD",
group = "path_class",
BMDsummary = "first.quartile")
# \donttest{
# (1.c) after selection on sensitivity
extendedres.c <- selectgroups(extendedres,
group = "path_class",
BMDmax = 1.25,
BMDtype = "zSD",
BMDsummary = "first.quartile",
nitemsmin = 1)
sensitivityplot(extendedres.c, BMDtype = "zSD",
group = "path_class",
BMDsummary = "first.quartile")
# (1.d) after selection on representativeness and sensitivity
extendedres.d <- selectgroups(extendedres,
group = "path_class",
BMDmax = 1.25,
BMDtype = "zSD",
BMDsummary = "first.quartile",
nitemsmin = 10)
sensitivityplot(extendedres.d, BMDtype = "zSD",
group = "path_class",
BMDsummary = "first.quartile")
# (2)
# An example with two molecular levels
#
### Rename metabolomic results
metabextendedres <- extendedres
# Import the dataframe with transcriptomic results
contigresfilename <- system.file("extdata", "triclosanSVcontigres.txt", package = "DRomics")
contigres <- read.table(contigresfilename, header = TRUE, stringsAsFactors = TRUE)
str(contigres)
# Import the dataframe with functional annotation (or any other descriptor/category
# you want to use, here KEGG pathway classes)
contigannotfilename <- system.file("extdata", "triclosanSVcontigannot.txt", package = "DRomics")
contigannot <- read.table(contigannotfilename, header = TRUE, stringsAsFactors = TRUE)
str(contigannot)
# Merging of both previous dataframes
contigextendedres <- merge(x = contigres, y = contigannot, by.x = "id", by.y = "contig")
# to see the structure of this dataframe
str(contigextendedres)
### Merge metabolomic and transcriptomic results
extendedres <- rbind(metabextendedres, contigextendedres)
extendedres$molecular.level <- factor(c(rep("metabolites", nrow(metabextendedres)),
rep("contigs", nrow(contigextendedres))))
str(extendedres)
# optional inverse alphabetic ordering of groups for the plot
extendedres$path_class <- factor(extendedres$path_class,
levels = sort(levels(extendedres$path_class), decreasing = TRUE))
### (2.1) sensitivity plot of both molecular levels before and after selection of
# most sensitive groups
sensitivityplot(extendedres, BMDtype = "zSD",
group = "path_class", colorby = "molecular.level",
BMDsummary = "first.quartile")
extendedres.2 <- selectgroups(extendedres,
group = "path_class",
explev = "molecular.level",
BMDmax = 1,
BMDtype = "zSD",
BMDsummary = "first.quartile",
nitemsmin = 1)
sensitivityplot(extendedres.2, BMDtype = "zSD",
group = "path_class", , colorby = "molecular.level",
BMDsummary = "first.quartile")
### (2.2) same selection but keeping all the experimental as soon
# as the selection criterion is met for at least one experimental level
extendedres.3 <- selectgroups(extendedres,
group = "path_class",
explev = "molecular.level",
BMDmax = 1,
BMDtype = "zSD",
BMDsummary = "first.quartile",
nitemsmin = 1,
keepallexplev = TRUE)
extendedres.2
extendedres.3
sensitivityplot(extendedres.3, BMDtype = "zSD",
group = "path_class", colorby = "molecular.level",
BMDsummary = "first.quartile")
# }
Run the code above in your browser using DataLab