data(seqData)
seqData=estNormFactors(seqData)
seqData=estDispersion(seqData)
head(dispersion(seqData))
## For multiple factor design
data(seqData)
Y=exprs(seqData)
design=data.frame(gender=c(rep("M",4), rep("F",4)), strain=rep(c("WT", "Mutant"),4))
X=as.data.frame(model.matrix(~gender+strain, data=design))
seqData=newSeqCountSet(Y, X)
seqData=estDispersion(seqData)
head(dispersion(seqData))
## the hypothesis testing for multifactor experiments can be performed
## using edgeR function, with DSS estimated dispersions
## Not run:
# library(edgeR)
# fit.edgeR <- glmFit(Y, X, lib.size=normalizationFactor(seqData), dispersion=dispersion(seqData))
# lrt.edgeR <- glmLRT(fit.edgeR, coef=2)
# head(lrt.edgeR$table)
# ## End(Not run)
Run the code above in your browser using DataLab