Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a '3+3/PC' dose-finding study. Please see Norris (2017) tools:::Rd_expr_doi("10.12688/f1000research.10624.3") and Norris (2017) tools:::Rd_expr_doi("10.1101/240846").
David C. Norris
Norris DC. Dose Titration Algorithm Tuning (DTAT) should supersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials. F1000Research. 2017;6:112. tools:::Rd_expr_doi("10.12688/f1000research.10624.3"). https://f1000research.com/articles/6-112/v3
Norris DC. Costing ‘the’ MTD. bioRxiv. August 2017:150821. tools:::Rd_expr_doi("10.1101/150821"). http://www.biorxiv.org/content/early/2017/08/22/150821
Norris DC. Precautionary Coherence Unravels Dose Escalation Designs. bioRxiv. December 2017:240846. tools:::Rd_expr_doi("10.1101/240846"). https://www.biorxiv.org/content/early/2017/12/29/240846
Norris DC. One-size-fits-all dosing in oncology wastes money, innovation and lives. Drug Discov Today. 2018;23(1):4-6. tools:::Rd_expr_doi("10.1016/j.drudis.2017.11.008"). https://www.sciencedirect.com/science/article/pii/S1359644617303586
Norris DC. Costing ‘the’ MTD ... in 2-D. bioRxiv. July 2018:370817. tools:::Rd_expr_doi("10.1101/370817"). https://www.biorxiv.org/content/early/2018/07/17/370817