powered by
Finds the best-fit Davies distribution using either the least-squares criterion (least.squares()) or maximum likelihood (maximum.likelihood())
least.squares()
maximum.likelihood()
least.squares(data, do.print = FALSE, start.v = NULL) maximum.likelihood(data, do.print = FALSE, start.v = NULL)
dataset to be fitted
Boolean with TRUE meaning print a GFM
TRUE
A suitable starting vector of parameters c(C,lambda1,lambda2), with default NULL meaning to use start()
c(C,lambda1,lambda2)
NULL
start()
Returns the parameters \(C,\lambda_1,\lambda_2\) of the best-fit Davies distribution to the dataset data
data
Uses optim() to find the best-fit Davies distribution to a set of data.
optim()
Function least.squares() does not match that of Hankin and Lee 2006.
davies.start, optim, objective, likelihood
davies.start
optim
objective
likelihood
# NOT RUN { p <- c(10 , 0.1 , 0.1) d <- rdavies(10,p) maximum.likelihood(d) # quite slow least.squares(d) # much faster but not recommended # }
Run the code above in your browser using DataLab