JarqueBeraTest(x, robust = TRUE, method = c("chisq", "mc"), N = 0, na.rm = FALSE)
chisq
or mc
, specifying how the critical
values should be obtained. Default is approximated by the
chisq-distribution or empirically via Monte Carlo.MeanAD
) to estimate sample kurtosis and skewness. For more details see Gel and Gastwirth (2006).Users can also choose to perform the classical Jarque-Bera test (see Jarque, C. and Bera, A (1980)).
Gel, Y. R. and Gastwirth, J. L. (2008) A robust modification of the Jarque-Bera test of normality, Economics Letters 99, 30-32.
Jarque, C. and Bera, A. (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals, Economics Letters 6, 255-259.
shapiro.test
,
AndersonDarlingTest
, CramerVonMisesTest
, LillieTest
, PearsonTest
, ShapiroFranciaTest
qqnorm
, qqline
for producing a normal quantile-quantile plot
x <- rnorm(100) # null hypothesis
JarqueBeraTest(x)
x <- runif(100) # alternative hypothesis
JarqueBeraTest(x, robust=TRUE)
Run the code above in your browser using DataLab