tab <- table(d.pizza$driver, d.pizza$area)
PercTable(tab=tab, col.vars=2)
PercTable(tab=tab, col.vars=2, margins=c(1,2))
PercTable(tab=tab, col.vars=2, margins=2)
PercTable(tab=tab, col.vars=2, margins=1)
PercTable(tab=tab, col.vars=2, margins=NULL)
PercTable(tab=tab, col.vars=2, rfrq="000")
# just the percentages without absolute values
PercTable(tab=tab, col.vars=2, rfrq="110", freq=FALSE)
# just the row percentages in percent format (pfmt = TRUE)
PercTable(tab, freq= FALSE, rfrq="010", pfmt=TRUE, digits=1)
# just the expected frequencies and the standard residuals
PercTable(tab=tab, rfrq="000", expected = TRUE, stdres = TRUE)
# rearrange output such that freq are inserted as columns instead of rows
PercTable(tab=tab, col.vars=c(3,2), rfrq="111")
# putting the cities in rows
PercTable(tab=tab, col.vars=c(3,1), rfrq="100", margins=c(1,2))
# formula interface with subset
PercTable(driver ~ area, data=d.pizza, subset=wine_delivered==0)
# sort the table by rows, order first column (Zurich), then third, then row.names (0)
PercTable(tab=Sort(tab, ord=c(1,3,0)))
# reverse the row variables, so that absolute frequencies and percents
# are not nested together
PercTable(tab, row.vars=c(3, 1))
# the vector interface
PercTable(x=d.pizza$driver, y=d.pizza$area)
PercTable(x=d.pizza$driver, y=d.pizza$area, margins=c(1,2), rfrq="000", useNA="ifany")
# one dimensional x falls back to the function Freq()
PercTable(x=d.pizza$driver)
# the margin tables
Margins(Titanic)
Run the code above in your browser using DataLab