m <- cor(d.pizza[,sapply(d.pizza, IsNumeric, na.rm=TRUE)], use="pairwise.complete.obs")
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20))
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20),
args.colorlegend=NA)
m <- PairApply(d.diamonds[, sapply(d.diamonds, is.factor)], CramerV, symmetric=TRUE)
PlotCorr(m, cols = colorRampPalette(c("white", "steelblue"), space = "rgb")(20),
breaks=seq(0, 1, length=21), border="black",
args.colorlegend = list(labels=sprintf("%.1f", seq(0, 1, length = 11)), frame=TRUE)
)
title(main="Cramer's V", line=2)
text(x=rep(1:ncol(m),ncol(m)), y=rep(1:ncol(m),each=ncol(m)),
label=sprintf("%0.2f", m[,ncol(m):1]), cex=0.8, xpd=TRUE)
# Spearman correlation on ordinal factors
csp <- cor(data.frame(lapply(d.diamonds[,c("carat", "clarity", "cut", "polish",
"symmetry", "price")], as.numeric)), method="spearman")
PlotCorr(csp)
# some more colors
PlotCorr(cor(mtcars), col=Pal("RedWhiteBlue1", 100), border="grey",
args.colorlegend=list(labels=Format(seq(-1,1,.25), digits=2), frame="grey"))
Run the code above in your browser using DataLab