Learn R Programming

DescTools (version 0.99.19)

TMod: Comparison Table For Linear Models

Description

Collect the coefficients and some qualifying statistics of given linear models and organize it in a table for comparison and reporting.

Usage

TMod(..., FUN = NULL)
ModSummary(x, ...)
"ModSummary"(x, conf.level=0.95, ...) "ModSummary"(x, conf.level=0.95, ...)

Arguments

x
a (general) linear model object.
...
a list of (general) linear models.
conf.level
the level for the confidence intervals.
FUN
function with arguments est, se, tval, pval, lci, uci to display the coefficients.

Value

Details

TMod constructs a comparing table of estimates for regression models.

See Also

help

Examples

Run this code
r.full <- lm(Fertility ~ . , swiss)
r.nox <- lm(Fertility ~ . -Examination - Catholic, swiss)
r.grp <- lm(Fertility ~ . -Education - Catholic + CutQ(Catholic), swiss)
r.gam <- glm(Fertility ~ . , swiss, family=Gamma(link="identity"))
r.gama <- glm(Fertility ~ .- Agriculture , swiss, family=Gamma(link="identity"))

TMod(r.full, r.nox, r.grp, r.gam, r.gama)

# display confidence intervals
TMod(r.full, r.nox, r.gam, FUN = function(est, se, tval, pval, lci, uci){
  gettextf("%s [%s, %s]",
           Format(est, fmt=Fmt("num")),
           Format(lci, digits=3),
           Format(uci, digits=2)
           )
})


# cbind interface is not supported!!
# d.titanic <- reshape(as.data.frame(Titanic),
#                       idvar = c("Class","Sex","Age"),
#                       timevar="Survived",
#                       direction = "wide")
#
# r.glm0 <- glm(cbind(Freq.Yes, Freq.No) ~ 1, data=d.titanic, family="binomial")
# r.glm1 <- glm(cbind(Freq.Yes, Freq.No) ~ Class, data=d.titanic, family="binomial")
# r.glm2 <- glm(cbind(Freq.Yes, Freq.No) ~ ., data=d.titanic, family="binomial")

d.titanic <- Untable(Titanic)

r.glm0 <- glm(Survived ~ 1, data=d.titanic, family="binomial")
r.glm1 <- glm(Survived ~ Class, data=d.titanic, family="binomial")
r.glm2 <- glm(Survived ~ ., data=d.titanic, family="binomial")

TMod(r.glm0, r.glm1, r.glm2)

Run the code above in your browser using DataLab