Learn R Programming

DescTools (version 0.99.32)

HosmerLemeshowTest: Hosmer-Lemeshow Goodness of Fit Tests

Description

The function computes Hosmer-Lemeshow goodness of fit tests for C and H statistic as well as the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of fit.

Usage

HosmerLemeshowTest(fit, obs, ngr = 10, X, verbose = FALSE)

Arguments

fit

numeric vector with fitted probabilities.

obs

numeric vector with observed values.

ngr

number of groups for C and H statistic.

X

covariate(s) for le Cessie-van Houwelingen-Copas-Hosmer global goodness of fit test.

verbose

logical, print intermediate results.

Value

A list of tests.

Details

Hosmer-Lemeshow goodness of fit tests are computed; see Lemeshow and Hosmer (1982).

If X is specified, the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of fit is additionally determined; see Hosmer et al. (1997).

References

Lemeshow, S. Hosmer, D.W., (1982): A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology, 115(1), 92-106.

Hosmer, D.W., Hosmer, T., le Cessie, S., Lemeshow, S. (1997). A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine, 16, 965-980.

See Also

glm

Examples

Run this code
# NOT RUN {
set.seed(111)

x1 <- factor(sample(1:3, 50, replace = TRUE))
x2 <- rnorm(50)
obs <- sample(c(0,1), 50, replace = TRUE)

fit <- glm(obs ~ x1+x2, family = binomial)

HosmerLemeshowTest(fit = fitted(fit), obs = obs, X = cbind(x1, x2))
# }

Run the code above in your browser using DataLab