Learn R Programming

DescTools (version 0.99.37)

RevWeibull: The Reverse Weibull Distribution

Description

Density function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.

Usage

dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)

dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE) pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE) qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE) rNegWeibull(n, loc=0, scale=1, shape=1)

Arguments

x, q

Vector of quantiles.

p

Vector of probabilities.

n

Number of observations.

loc, scale, shape

Location, scale and shape parameters (can be given as vectors).

log

Logical; if TRUE, the log density is returned.

lower.tail

Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Value

dRevWeibull and dNegWeibull give the density function, pRevWeibull and pNegWeibull give the distribution function, qRevWeibull and qNegWeibull give the quantile function, rRevWeibull and rNegWeibull generate random deviates.

Details

The reverse (or negative) Weibull distribution function with parameters \(loc = a\), \(scale = b\) and \(shape = s\) is $$G(z) = \exp\left\{-\left[-\left(\frac{z-a}{b}\right) \right]^s\right\}$$ for \(z < a\) and one otherwise, where \(b > 0\) and \(s > 0\).

See Also

rFrechet, rGenExtrVal, rGumbel

Examples

Run this code
# NOT RUN {
dRevWeibull(-5:-3, -1, 0.5, 0.8)
pRevWeibull(-5:-3, -1, 0.5, 0.8)
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rRevWeibull(6, -1, 0.5, 0.8)
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# }

Run the code above in your browser using DataLab