# Duller, S. 183
x <- c(12, 13, 29, 30)
y <- c(15, 17, 18, 24, 25, 26)
SiegelTukeyTest(x, y)
SiegelTukeyTest(x, y, alternative="greater")
# Duller, S. 323
old <- c(870,930,935,1045,1050,1052,1055)
new <- c(932,970,980,1001,1009,1030,1032,1040,1046)
SiegelTukeyTest(old, new, alternative = "greater")
# compare to the recommended alternatives
mood.test(old, new, alternative="greater")
ansari.test(old, new, alternative="greater")
# Bortz, S. 250
x <- c(26.3,26.5,26.8,27.0,27.0,27.2,27.3,27.3,27.4,27.5,27.6,27.8,27.9)
id <- c(2,2,2,1,2,2,1,2,2,1,1,1,2)-1
SiegelTukeyTest(x ~ id)
# Sachs, Angewandte Statistik, 12. Auflage, 2007, S. 314
A <- c(10.1,7.3,12.6,2.4,6.1,8.5,8.8,9.4,10.1,9.8)
B <- c(15.3,3.6,16.5,2.9,3.3,4.2,4.9,7.3,11.7,13.1)
SiegelTukeyTest(A, B)
### 1
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10,10)
SiegelTukeyTest(x, y)
### 2
# example for a non equal number of cases:
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10)
SiegelTukeyTest(x, y)
### 3
x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
id <- c(0,0,0,0,0,0,0,1,1,1,1,1,1)
SiegelTukeyTest(x ~ id)
### 4
x <- c(177,200,227,230,232,268,272,297,47,105,126,142,158,172,197,220,225,230,262,270)
id <- c(rep(0,8),rep(1,12))
SiegelTukeyTest(x ~ id, adjust.median=TRUE)
### 5
x <- c(33,62,84,85,88,93,97)
y <- c(4,16,48,51,66,98)
SiegelTukeyTest(x, y)
### 6
x <- c(0,0,1,4,4,5,5,6,6,9,10,10)
id <- c(0,0,0,1,1,1,1,1,1,0,0,0)
SiegelTukeyTest(x ~ id)
### 7
x <- c(85,106,96, 105, 104, 108, 86)
id <- c(0,0,1,1,1,1,1)
SiegelTukeyTest(x ~ id)
Run the code above in your browser using DataLab