# Multinomial distribution with 3 classes, from which a sample of 79 elements
# were drawn: 23 of them belong to the first class, 12 to the
# second class and 44 to the third class. Punctual estimations
# of the probabilities from this sample would be 23/79, 12/79
# and 44/79 but we want to build 95% simultaneous confidence intervals
# for the true probabilities
MultinomCI(c(23, 12, 44), conf.level=0.95)
# single sided
MultinomCI(c(23, 12, 44), conf.level=0.95, sides="left")
MultinomCI(c(23, 12, 44), conf.level=0.95, sides="right")
x <- c(35, 74, 22, 69)
MultinomCI(x, method="goodman")
MultinomCI(x, method="sisonglaz")
MultinomCI(x, method="cplus1")
MultinomCI(x, method="wald")
MultinomCI(x, method="waldcc")
MultinomCI(x, method="wilson")
# compare to
BinomCI(x, n=sum(x))
# example in Goodman (1965)
MultinomCI(x=c(91, 49, 37, 43), conf.level=0.95, method="goodman")
# example from Sison, Glaz (1999) in Sangeetha (2013) - Table 2
#
# Wald Wald_CC Wilson Quesnberry-Hurst
# LL UL LL UL LL UL LL UL
# 1 0.090 0.149 0.089 0.150 0.094 0.153 0.076 0.183
# 2 0.121 0.187 0.120 0.188 0.124 0.190 0.104 0.222
# 3 0.123 0.189 0.122 0.190 0.126 0.192 0.106 0.225
# 4 0.096 0.156 0.095 0.158 0.099 0.160 0.081 0.191
# 5 0.102 0.164 0.101 0.165 0.105 0.167 0.087 0.198
# 6 0.151 0.222 0.150 0.223 0.154 0.224 0.131 0.258
# 7 0.094 0.154 0.093 0.155 0.097 0.157 0.080 0.188
# Goodman Fitzpatrick-Scott Sison-Glaz
# LL UL LL UL LL UL
# 1 0.085 0.166 0.075 0.165 0.079 0.164
# 2 0.115 0.204 0.109 0.200 0.114 0.199
# 3 0.116 0.207 0.111 0.202 0.116 0.201
# 4 0.091 0.173 0.081 0.172 0.086 0.171
# 5 0.096 0.181 0.087 0.178 0.092 0.177
# 6 0.143 0.239 0.141 0.232 0.146 0.231
# 7 0.089 0.171 0.079 0.170 0.084 0.169
x <- c(56, 72, 73, 59, 62, 87, 58)
do.call(cbind, lapply(c("wald", "waldcc", "wilson",
"qh", "goodman", "fs", "sisonglaz"),
function(m) round(MultinomCI(x, method=m)[,-1], 3)))
Run the code above in your browser using DataLab