HuberM(c(1:9, 1000))
mad (c(1:9, 1000))
mad (rep(9, 100))
HuberM(rep(9, 100))
## When you have "binned" aka replicated observations:
set.seed(7)
x <- c(round(rnorm(1000),1), round(rnorm(50, m=10, sd = 10)))
t.x <- table(x) # -> unique values and multiplicities
x.uniq <- as.numeric(names(t.x)) ## == sort(unique(x))
x.mult <- unname(t.x)
str(Hx <- HuberM(x.uniq, weights = x.mult, stats=TRUE), digits = 7)
str(Hx. <- HuberM(x, s = Hx$s, se=TRUE, stats=TRUE), digits = 7) ## should be ~= Hx
stopifnot(all.equal(Hx[-4], Hx.[-4]))
str(Hx2 <- HuberM(x, se=TRUE), digits = 7)## somewhat different, since 's' differs
## Confirm correctness of std.error :
# system.time(
# SS <- replicate(10000, vapply(HuberM(rnorm(400), se=TRUE), as.double, 1.))
# ) # ~ 12.2 seconds
# rbind(mean(SS["SE",]), sd(SS["mu",]))# both ~ 0.0508
# stopifnot(all.equal(mean(SS["SE",]),
# sd ( SS["mu",]), tol= 0.002))
Run the code above in your browser using DataLab