Learn R Programming

DiceDesign (version 1.10)

runif.faure: Low discrepancy sequence : Faure

Description

Generate a Faure sequence with \(n\) experiments in [0,1]\(^d\).

Usage

runif.faure(n, dimension)

Value

runif.halton returns a list containing all the input arguments detailed before, plus the following component:

design

the design of experiments

Arguments

n

the number of experiments

dimension

the number of variables (<100)

Author

J. Franco

Details

A quasirandom or low discrepancy sequence, such as the Faure, Halton, Hammersley, Niederreiter or Sobol sequences, is "less random" than a pseudorandom number sequence, but more useful for such tasks as approximation of integrals in higher dimensions, and in global optimization. This is because low discrepancy sequences tend to sample space "more uniformly" than random numbers.

see randtoolbox or fOptions packages for other low discrepancy sequences.

References

Faure H. (1982), Discrepance de suites associees a un systeme de numeration (en dimension s), Acta Arith., 41, 337-351

Examples

Run this code
f <- runif.faure(20,2)
plot(f$design, xlim=c(0,1), ylim=c(0,1))
xDRDN(f, letter="T", dgts=2, range=c(-10, 10))

Run the code above in your browser using DataLab