Learn R Programming

Directional (version 6.8)

Projections based test of uniformity: Projections based test of uniformity

Description

It checkes whether the data are uniformly distributed on the circle or the (hyper-)sphere.

Usage

ptest(x, B = 100)

Value

A list including:

pvalues

The p-values of the Kolmogorov-Smirnov tests.

pvalue

The p-value of the test based on the Benjamini and Heller (2008) procedure.

Arguments

x

A matrix containing the data, unit vectors.

B

The number of random uniform projections to use.

Author

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

Details

For more details see Cuesta-Albertos, Cuevas and Fraiman (2009).

References

Cuesta-Albertos J. A., Cuevas A. and Fraiman, R. (2009). On projection-based tests for directional and compositional data. Statistics and Computing, 19: 367--380.

Benjamini Y. and Heller R. (2008). Screening for partial conjunction hypotheses. Biometrics, 64(4): 1215--1222.

See Also

rayleigh, kuiper

Examples

Run this code
x <- rvmf(100, rnorm(5), 1)  ## Fisher distribution with low concentration
ptest(x)

Run the code above in your browser using DataLab