Learn R Programming

Distributacalcul (version 0.4.0)

bivariateMO: Bivariate Marshall-Olkin Copula

Description

Computes CDF and simulations of the bivariate Marshall-Olkin copula.

Usage

cBivariateMO(u1, u2, dependencyParameter, ...)

crBivariateMO(numberSimulations = 10000, seed = 42, dependencyParameter)

Value

Function :

  • cBivariateMO returns the value of the copula.

  • crBivariateMO returns simulated values of the copula.

Arguments

u1, u2

points at which to evaluate the copula.

dependencyParameter

correlation parameters, must be vector of length 2.

...

other parameters.

numberSimulations

Number of simulations.

seed

Simulation seed, 42 by default.

Details

The bivariate Marshall-Olkin copula has CDF : $$C(u_{1}, u_{2}) = u_{1}u_{2}^{1 - \beta} \times% \textbf{1}_{\{u_{1}^{\alpha} \leq u_{2}^{\beta}\}} + % u_{1}^{1 - \alpha}u_{2} \times \textbf{1}_{\{u_{1}^{\alpha}% \geq u_{2}^{\beta}\}}$$ for \(u_{1}, u_{2}, \alpha, \beta \in [0, 1]\). It is the geometric mean of the independance and upper Fréchet bound copulas.

Examples

Run this code
cBivariateMO(u1 = .76, u2 = 0.4, dependencyParameter = c(0.4, 0.3))

crBivariateMO(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.5))

Run the code above in your browser using DataLab