require(stats)
examplecheck<-rnbinom(100,10,0.1)
is.nbinom(examplecheck,10,0.05)
#examplecheck is a dataset with a defined distribution you want to check. Suppose you want to devide the interval into 10 parts and want the confidence level to be 0.05#
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, m, a, p0 = NULL, r0 = NULL)
{
re = 1
for (i in 1:length(x)) if (x[i] <= 0)
re = -1
p = rep(0, m + 2)
y = rep(0, m + 2)
q = 0
if (re == -1) {
return(-1)
}
else {
x1 = mean(x)
sum = 0
for (i in 1:length(x)) {
sum = sum + x[i]^2
}
x2 = sum/length(x)
if (is.null(p0) && is.null(r0)) {
p0 = x1/(x2 - x1^2)
r0 = round(p0 * x1/(1 - p0))
df = m - 1
}
else if (is.null(p0)) {
p0 = 1 - x1^2/(x2 - x1^2)
df = m
}
else if (is.null(r0)) {
r0 = round(p0 * x1/(1 - p0))
df = m
}
else {
df = m + 1
}
if (p0 > 0 && p0 < 1 && r0 > 0) {
di = max(x) - min(x)
for (i in 1:m) {
p[i] = pnbinom(min(x) + round(di * i/m), r0,
p0) - pnbinom(min(x) + round(di * (i - 1)/m),
r0, p0)
if (p[i] == 0) {
break
}
for (j in 1:length(x)) if (x[j] > (min(x) + di *
(i - 1)/m) && x[j] <= (min(x) + di * i/m))
y[i] = y[i] + 1
q = q + (y[i] - (length(x) * p[i]))^2/(length(x) *
p[i])
}
p[m + 1] = pnbinom(Inf, r0, p0) - pnbinom(max(x),
r0, p0)
q = q + (y[m + 1] - (length(x) * p[m + 1]))^2/(length(x) *
p[m + 1])
p[m + 2] = pnbinom(min(x), r0, p0)
y[m + 2] = length(which(x == min(x)))
q = q + (y[m + 2] - (length(x) * p[m + 2]))^2/(length(x) *
p[m + 2])
q0 = qchisq(1 - a, df)
if (q <= q0) {
return(q0 - q)
}
else {
return(-1)
}
}
else {
return(-1)
}
}
}
Run the code above in your browser using DataLab