Learn R Programming

DriveML (version 0.1.5)

misspattern: Missing pattern analysis for missing data

Description

This function is used to summarise the missing variable, missing pattern identification and classifying the columns based on the pattern of missing values.

Usage

misspattern(data, mfeature, drop = 0.99, print = FALSE)

Value

final variable list, summary of missing data analysis

Arguments

data

[data.frame | Required] data set with missing values

mfeature

[character | Required] only missing variable name

drop

[numeric | optional] drop variable percentage. Example, if drop = 0.9, function will automatically drop 90per missing columns from the data set

print

[character | optional] defualt print is FALSE

Examples

Run this code
## Sample iris data
mdata <- iris
mobject <- misspattern(mdata, mfeature = c("Sepal.Length", "Petal.Length"), drop = 0.99, print = F)

Run the code above in your browser using DataLab