data(bmiData)
y <- -(bmiData$month12BMI - bmiData$month4BMI) / bmiData$month4BMI * 100
miny <- min(y)
if(miny < 0.0) y <- y - miny
prWgt <- numeric(nrow(bmiData)) + 0.5
regime <- ~ parentBMI + baselineBMI + gender
txVec <- numeric(nrow(bmiData)) - 1L
txVec[bmiData$A2 == "MR"] <- 1L
bmiData$A2 <- as.factor(bmiData$A2)
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL, txName = "A2", data = bmiData,
suppress = TRUE, verify = TRUE)
obj <- DynTxRegime:::.newBOWLOptimization(regime = regime,
txInfo = txInfo,
ind = !logical(nrow(bmiData)),
prWgt = prWgt,
response = y,
txVec = txVec,
data = bmiData,
kernel = "linear",
kparam = NULL,
lambdas = 0.1,
cvFolds = 0L,
suppress = TRUE)
is(obj)
cvInfo(obj)
optimObj(obj)
DynTxRegime:::.predictOptimalTx(obj)
DynTxRegime:::.predictOptimalTx(obj,bmiData)
print(obj)
regimeCoef(obj)
show(obj)
summary(obj)
obj <- DynTxRegime:::.newBOWLOptimization(regime = regime,
txInfo = txInfo,
ind = !logical(nrow(bmiData)),
prWgt = prWgt,
response = y,
txVec = txVec,
data = bmiData,
kernel = "linear",
kparam = NULL,
lambdas = c(0.1,0.2,0.3),
cvFolds = 4L,
suppress = TRUE)
is(obj)
cvInfo(obj)
optimObj(obj)
DynTxRegime:::.predictOptimalTx(obj)
DynTxRegime:::.predictOptimalTx(obj,bmiData)
print(obj)
regimeCoef(obj)
show(obj)
summary(obj)
fSet <- function(data){
subsets = list(list("subset1", c("CD","MR")),
list("subset2", c("CD","MR")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "CD"] <- "subset1"
txOpts[data$A1 == "MR"] <- "subset2"
return(list("subsets" = subsets, "txOpts" = txOpts))
}
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet, txName = "A2", data = bmiData,
suppress = TRUE, verify = TRUE)
obj <- DynTxRegime:::.newBOWLOptimization(regime = list("subset1"=regime,"subset2"=regime),
txInfo = txInfo,
ind = !logical(nrow(bmiData)),
prWgt = prWgt,
response = y,
txVec = txVec,
data = bmiData,
kernel = "linear",
kparam = NULL,
lambdas = 0.1,
cvFolds = 0L,
suppress = TRUE)
is(obj)
cvInfo(obj)
optimObj(obj)
DynTxRegime:::.predictOptimalTx(obj)
DynTxRegime:::.predictOptimalTx(obj,bmiData)
print(obj)
regimeCoef(obj)
show(obj)
summary(obj)
bmiData$A2[bmiData$A1 == "MR"] <- "CD"
fSet <- function(data){
subsets = list(list("subset1", c("CD","MR")),
list("subset2", c("CD")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "CD"] <- "subset1"
txOpts[data$A1 == "MR"] <- "subset2"
return(list("subsets" = subsets, "txOpts" = txOpts))
}
prWgt[bmiData$A1 == "MR"] <- 1.0
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet, txName = "A2", data = bmiData,
suppress = TRUE, verify = TRUE)
obj <- DynTxRegime:::.newBOWLOptimization(regime = regime,
txInfo = txInfo,
ind = !logical(nrow(bmiData)),
prWgt = prWgt,
response = y,
txVec = txVec,
data = bmiData,
kernel = "linear",
kparam = NULL,
lambdas = 0.1,
cvFolds = 0L,
suppress = TRUE)
is(obj)
cvInfo(obj)
optimObj(obj)
DynTxRegime:::.predictOptimalTx(obj)
DynTxRegime:::.predictOptimalTx(obj,bmiData)
print(obj)
regimeCoef(obj)
show(obj)
summary(obj)
Run the code above in your browser using DataLab