data(bmiData)
y <- -(bmiData$month12BMI - bmiData$month4BMI) / bmiData$month4BMI * 100
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family" = "binomial"),
predict.args = list("type" = "response"))
moMain <- buildModelObj(model = ~ parentBMI + baselineBMI + month4BMI,
solver.method = 'lm')
regime <- ~ parentBMI + baselineBMI + gender
txVec <- numeric(nrow(bmiData)) - 1L
txVec[bmiData$A2 == "MR"] <- 1L
bmiData$A2 <- as.factor(bmiData$A2)
obj <- DynTxRegime:::.newEARL(moPropen = moPropen,
moMain = NULL,
moCont = NULL,
data = bmiData,
response = y,
txName = "A2",
regime = regime,
lambdas = 0.1,
cvFolds = 0L,
surrogate = "hinge",
guess = NULL,
txVec = txVec,
suppress = TRUE)
is(obj)
coef(obj)
cvInfo(obj)
DTRstep(obj)
estimator(obj)
fitObject(obj)
optimObj(obj)
optTx(obj)
optTx(obj,bmiData)
outcome(obj)
print(obj)
propen(obj)
regimeCoef(obj)
show(obj)
summary(obj)
obj <- DynTxRegime:::.newEARL(moPropen = moPropen,
moMain = moMain,
moCont = moMain,
data = bmiData,
response = y,
txName = "A2",
regime = regime,
lambdas = c(0.1,0.2),
cvFolds = 4L,
surrogate = "hinge",
guess = NULL,
txVec = txVec,
iter = 0L,
suppress = TRUE)
is(obj)
coef(obj)
cvInfo(obj)
DTRstep(obj)
estimator(obj)
fitObject(obj)
optimObj(obj)
optTx(obj)
optTx(obj,bmiData)
outcome(obj)
print(obj)
propen(obj)
regimeCoef(obj)
show(obj)
summary(obj)
Run the code above in your browser using DataLab