data(bmiData)
bmiData$A2 <- as.factor(bmiData$A2)
moMain <- buildModelObj(model = ~month4BMI + baselineBMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~month4BMI + baselineBMI,
solver.method = 'lm')
y <- -(bmiData$month12BMI - bmiData$month4BMI) / bmiData$month4BMI * 100
# Treatment Object
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL,
txName = "A1",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newIterateFit(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
max.iter = 100L,
suppress = TRUE)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
fSet1 <- function(data){
subsets <- list(list("subset1",c("CD","MR")),
list("subset2",c("MR")))
txOpts <- character(nrow(data))
txOpts[data$baselineBMI <= 35] <- "subset2"
txOpts[data$baselineBMI > 35] <- "subset1"
return(list("subsets" = subsets, "txOpts" = txOpts))
}
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet1,
txName = "A2",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newIterateFit(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
max.iter = 100L,
suppress = TRUE)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
Run the code above in your browser using DataLab