data(bmiData)
library(rpart)
y <- -(bmiData$month12BMI - bmiData$month4BMI) / bmiData$month4BMI * 100
bmiData$A2 <- as.factor(bmiData$A2)
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family" = "binomial"),
predict.args = list("type" = "response"))
moMain <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
moClass <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'rpart',
predict.args = list("type"="class"))
obj <- DynTxRegime:::.newOptimalClass(moPropen = moPropen,
moMain = NULL,
moCont = NULL,
moClass = moClass,
data = bmiData,
response = y,
txName = 'A2',
suppress = TRUE)
is(obj)
coef(obj)
DTRstep(obj)
estimator(obj)
fitObject(obj)
optTx(obj)
optTx(obj,bmiData)
outcome(obj)
plot(obj)
propen(obj)
show(obj)
summary(obj)
obj <- DynTxRegime:::.newOptimalClass(moPropen = moPropen,
moMain = moMain,
moCont = moCont,
moClass = moClass,
data = bmiData,
response = y,
txName = 'A2',
iter = 0L,
suppress = TRUE)
is(obj)
coef(obj)
DTRstep(obj)
estimator(obj)
fitObject(obj)
optTx(obj)
optTx(obj,bmiData)
outcome(obj)
plot(obj)
propen(obj)
show(obj)
summary(obj)
Run the code above in your browser using DataLab