data(bmiData)
y <- -(bmiData$month12BMI - bmiData$baselineBMI) / bmiData$baselineBMI * 100
bmiData$A2 <- as.factor(bmiData$A2)
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family" = "binomial"),
predict.args = list("type" = "response"))
moMain <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
# Treatment Object
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL,
txName = "A1",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
iter = 100L,
suppress = TRUE)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
fSet1 <- function(data){
subsets <- list(list("subset1",c("CD","MR")),
list("subset2",c("CD","MR")))
txOpts <- character(nrow(data))
txOpts[data$baselineBMI <= 35] <- "subset2"
txOpts[data$baselineBMI > 35] <- "subset1"
return(list("subsets" = subsets, "txOpts" = txOpts))
}
moMain <- list()
moMain[[1L]] <- buildModelObjSubset(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm',
subset = "subset1")
moMain[[2L]] <- buildModelObjSubset(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm',
subset = "subset1")
moCont <- list()
moCont[[1L]] <- buildModelObjSubset(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm',
subset = "subset1")
moCont[[2L]] <- buildModelObjSubset(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm',
subset = "subset2")
moMain <- DynTxRegime:::.newModelObjSubset(moMain)
moCont <- DynTxRegime:::.newModelObjSubset(moCont)
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet1,
txName = "A2",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
iter = 100L,
suppress = TRUE)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
moMain <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~parentBMI+baselineBMI+month4BMI,
solver.method = 'lm')
# Treatment Object
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL,
txName = "A2",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
iter = 0L,
suppress = TRUE)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = NULL,
txInfo = txInfo,
data = bmiData,
response = y,
iter = 0L,
suppress = TRUE)
is(obj)
print(obj)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = NULL,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
iter = 0L,
suppress = TRUE)
is(obj)
print(obj)
bmiData$A3 <- bmiData$A2
bmiData$A3[bmiData$A1 == "CD"] <- "CD"
fSet1 <- function(data){
subsets <- list(list("subset1",c("CD","MR")),
list("subset2",c("CD")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "CD"] <- "subset2"
txOpts[data$A1 == "MR"] <- "subset1"
return(list("subsets" = subsets, "txOpts" = txOpts))
}
# Integer treatment with subsetting
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet1,
txName = "A3",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
suppress = TRUE,
iter = 0L)
is(obj)
coef(obj)
fitObject(obj)
plot(obj)
predict(obj)
predict(obj, bmiData)
DynTxRegime:::.predictAllTreatments(object = obj, data = bmiData)
print(obj)
show(obj)
summary(obj)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = moMain,
moCont = NULL,
txInfo = txInfo,
data = bmiData,
response = y,
suppress = TRUE,
iter = 0L)
is(obj)
print(obj)
obj <- DynTxRegime:::.newOutcomeRegression(moMain = NULL,
moCont = moCont,
txInfo = txInfo,
data = bmiData,
response = y,
suppress = TRUE,
iter = 0L)
is(obj)
print(obj)
Run the code above in your browser using DataLab