data(bmiData)
y <- -(bmiData$month12BMI - bmiData$month4BMI) / bmiData$month4BMI * 100
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family" = "binomial"),
predict.args = list("type" = "response"))
moMain <- buildModelObj(model = ~ parentBMI + baselineBMI + month4BMI,
solver.method = 'lm')
regime <- ~ parentBMI + baselineBMI + gender
txVec <- numeric(nrow(bmiData)) - 1L
txVec[bmiData$A2 == "MR"] <- 1L
bmiData$A2 <- as.factor(bmiData$A2)
## Not run: ------------------------------------
# obj <- DynTxRegime:::.newRWL(moPropen = moPropen,
# moMain = moMain,
# data = bmiData,
# response = y,
# txName = "A2",
# regime = regime,
# lambdas = 0.1,
# cvFolds = 0L,
# kernel = "linear",
# kparam = NULL,
# responseType = "continuous",
# txVec = txVec,
# guess = NULL,
# suppress = TRUE)
#
# is(obj)
# coef(obj)
# cvInfo(obj)
# DTRstep(obj)
# estimator(obj)
# fitObject(obj)
# optimObj(obj)
# optTx(obj)
# optTx(obj,bmiData)
# outcome(obj)
# print(obj)
# propen(obj)
# regimeCoef(obj)
# show(obj)
# summary(obj)
#
# obj <- DynTxRegime:::.newRWL(moPropen = moPropen,
# moMain = moMain,
# data = bmiData,
# response = y,
# txName = "A2",
# regime = regime,
# lambdas = c(0.1,0.2),
# cvFolds = 4L,
# kernel = "linear",
# kparam = NULL,
# responseType = "continuous",
# txVec = txVec,
# guess = NULL,
# suppress = TRUE)
#
# is(obj)
# coef(obj)
# cvInfo(obj)
# DTRstep(obj)
# estimator(obj)
# fitObject(obj)
# optimObj(obj)
# optTx(obj)
# optTx(obj,bmiData)
# outcome(obj)
# print(obj)
# propen(obj)
# regimeCoef(obj)
# show(obj)
# summary(obj)
#
#
# obj <- DynTxRegime:::.newRWL(moPropen = moPropen,
# moMain = moMain,
# data = bmiData,
# response = y,
# txName = "A2",
# regime = regime,
# lambdas = c(0.1,0.2),
# cvFolds = 4L,
# kernel = "radial",
# kparam = c(1,2),
# responseType = "continuous",
# txVec = txVec,
# guess = NULL,
# suppress = TRUE)
#
# is(obj)
# coef(obj)
# cvInfo(obj)
# DTRstep(obj)
# estimator(obj)
# fitObject(obj)
# optimObj(obj)
# optTx(obj)
# optTx(obj,bmiData)
# outcome(obj)
# print(obj)
# propen(obj)
# regimeCoef(obj)
# show(obj)
# summary(obj)
#
# obj <- DynTxRegime:::.newRWL(moPropen = moPropen,
# moMain = moMain,
# data = bmiData,
# response = y,
# txName = "A2",
# regime = regime,
# lambdas = 0.1,
# cvFolds = 4L,
# kernel = "radial",
# kparam = c(1,2),
# responseType = "continuous",
# txVec = txVec,
# guess = NULL,
# suppress = TRUE)
#
# is(obj)
# coef(obj)
# cvInfo(obj)
# DTRstep(obj)
# estimator(obj)
# fitObject(obj)
# optimObj(obj)
# optTx(obj)
# optTx(obj,bmiData)
# outcome(obj)
# print(obj)
# propen(obj)
# regimeCoef(obj)
# show(obj)
# summary(obj)
## ---------------------------------------------
Run the code above in your browser using DataLab