# NOT RUN {
data(bmiData)
bmiData$A2 <- as.factor(bmiData$A2)
bmiData$A1 <- as.factor(bmiData$A1)
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"))
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL,
txName = "A2",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropen,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
fSet <- function(data){
subsets <- list(list("subset1", c("CD","MR")),
list("subset2", c("CD")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "MR"] <- "subset1"
txOpts[data$A1 == "CD"] <- "subset2"
return(list("subsets" = subsets,
"txOpts" = txOpts))
}
bmiData$A3 <- bmiData$A2
bmiData$A3[bmiData$A1 == "CD"] <- "CD"
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet,
txName = "A3",
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropen,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
fSet <- function(data){
subsets <- list(list("subset1", c("CD","MR")),
list("subset2", c("CD","MR")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "MR"] <- "subset1"
txOpts[data$A1 == "CD"] <- "subset2"
return(list("subsets" = subsets,
"txOpts" = txOpts))
}
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet,
txName = "A2",
data = bmiData,
suppress = TRUE,
verify = TRUE)
moPropenSS <- list()
moPropenSS[[1L]] <- buildModelObjSubset(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"),
subset = "subset1")
moPropenSS[[2L]] <- buildModelObjSubset(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"),
subset = "subset2")
moPropenSS <- DynTxRegime:::.newModelObjSubset(moPropenSS)
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropenSS,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
txInfo <- DynTxRegime:::.newTxInfo(fSet = NULL,
txName = list("A1","A2"),
data = bmiData,
suppress = TRUE,
verify = TRUE)
moPropenDP <- list()
moPropenDP[[1L]] <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"))
moPropenDP[[2L]] <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"))
moPropenDP <- DynTxRegime:::.checkModelObjOrModelObjSubsetOrList(moPropenDP, "moPropen")
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropenDP,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
fSet <- list()
fSet[[1L]] <- function(data){
subsets <- list(list("subset1", c("CD","MR")))
txOpts <- character(nrow(data))
txOpts[] <- "subset1"
return(list("subsets" = subsets,
"txOpts" = txOpts))
}
fSet[[2L]] <- function(data){
subsets <- list(list("subset1", c("CD","MR")),
list("subset2", c("CD","MR")))
txOpts <- character(nrow(data))
txOpts[data$A1 == "MR"] <- "subset1"
txOpts[data$A1 == "CD"] <- "subset2"
return(list("subsets" = subsets,
"txOpts" = txOpts))
}
txInfo <- DynTxRegime:::.newTxInfo(fSet = fSet,
txName = list("A1","A2"),
data = bmiData,
suppress = TRUE,
verify = TRUE)
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropenDP,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
moPropenSSDP <- list()
moPropenSSDP[[1L]] <- buildModelObjSubset(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"),
subset = "subset1",
dp = 1L)
moPropenSSDP[[2L]] <- buildModelObjSubset(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"),
subset = "subset1",
dp = 2L)
moPropenSSDP[[3L]] <- buildModelObjSubset(model = ~1,
solver.method = 'glm',
solver.args = list("family"="binomial"),
predict.args = list("type" = "response"),
subset = "subset2",
dp = 2L)
moPropenSSDP <- DynTxRegime:::.newModelObjSubset(moPropenSSDP)
obj <- DynTxRegime:::.newPropensityRegression(moPropen = moPropenSSDP,
txInfo = txInfo,
data = bmiData,
suppress = TRUE)
is(obj)
coef(object = obj)
fitObject(object = obj)
plot(x = obj)
predict(object = obj)
predict(object = obj, newdata = bmiData)
print(obj)
show(object = obj)
summary(object = obj)
# }
Run the code above in your browser using DataLab