Performs a weighted learning analysis.
.newLearning(fSet, kernel, ...)# S4 method for `NULL`,Kernel
.newLearning(
fSet,
kernel,
...,
moPropen,
moMain,
moCont,
data,
response,
txName,
lambdas,
cvFolds,
iter,
surrogate,
suppress,
guess,
createObj,
prodPi = 1,
index = NULL
)
# S4 method for `function`,Kernel
.newLearning(
fSet,
kernel,
...,
moPropen,
moMain,
moCont,
data,
response,
txName,
lambdas,
cvFolds,
iter,
surrogate,
suppress,
guess,
createObj,
prodPi = 1,
index = NULL
)
# S4 method for `function`,SubsetList
.newLearning(
fSet,
kernel,
moPropen,
moMain,
moCont,
data,
response,
txName,
lambdas,
cvFolds,
iter,
surrogate,
suppress,
guess,
createObj,
prodPi = 1,
index = NULL,
...
)
A Learning
object
NULL or function defining subset rules
Kernel object or SubsetList
Additional inputs for optimization
modelObj for propensity model
modelObj for main effects of outcome model
modelObj for contrasts of outcome model
data.frame of covariates
Vector of responses
Tx variable column header in data
Tuning parameter(s)
Number of cross-validation folds
Maximum number of iterations for outcome regression
Surrogate object
T/F indicating if prints to screen are executed
optional numeric vector providing starting values for optimization methods
A function name defining the method object for a specific learning algorithm
A vector of propensity weights
The subset of individuals to be included in learning