Complete an OWL Analysis
.newOWL(
moPropen,
data,
response,
txName,
lambdas,
cvFolds,
kernel,
fSet,
surrogate,
suppress,
guess,
...
)
An OWL object
modelObj for propensity modeling
data.frame of covariates
Vector of responses
Tx variable column header in data
Tuning parameter(s)
Number of cross-validation folds
Kernel object or SubsetList
NULL or function defining subset rules
Surrogate object
T/F indicating if prints to screen are executed
optional numeric vector providing starting values for optimization methods
Additional inputs for optimization