Learn R Programming

DynTxRegime (version 4.15)

.newRWL,Kernel-method: Complete a Residual Weighted Learning Analysis

Description

Complete a Residual Weighted Learning Analysis

Usage

# S4 method for Kernel
.newRWL(
  moPropen,
  moMain,
  responseType,
  data,
  response,
  txName,
  lambdas,
  cvFolds,
  surrogate,
  guess,
  kernel,
  fSet,
  suppress,
  ...
)

Value

An RWL object

Arguments

moPropen

modelObj for propensity modeling

moMain

modelObj for main effects

responseType

Character indicating type of response

data

data.frame of covariates

response

vector of responses

txName

treatment variable column header in data

lambdas

tuning parameter(s)

cvFolds

number of cross-validation folds

surrogate

Surrogate object

guess

optional numeric vector providing starting values for optimization methods

kernel

Kernel object

fSet

Function or NULL defining subsets

suppress

T/F indicating if prints to screen are executed

...

Additional inputs for optimization